

SWARM

Compute for the community.
By the community.

Felix Peng, Anika Sharma, Rohan Desai, Sam Freeman, Sinclair Dobbs
Built with Perplexity & Notion.

Interviews + User groups

What did you do with your last laptop when you upgraded?

How often do you upgrade your phone or laptop?

What's the oldest electronic device you still use regularly?

What's your main reason for replacing electronics—tech issues, new features, or something else?

What feedback do you have for recycling vs. upcycling?

Talking to Customers

"[Upcycling into a computer lab] sounds really cool, so I'll go with that one"

—Interviewee #1

"I still have [my laptop], I don't know what to do with it"

—Interviewee #4

"My oldest device is my phone, and I got it a year ago"

—Interviewee #2

"I always support upcycling with e-waste, it's very important"

—Interviewee #5

"I just got a new phone pretty recently but I had an old iPhone SE"

—Interviewee #3

"This is more economical and more climate-friendly"

—Interviewee #6

Within the Claremont Colleges

Current Students	Average lifespan of one phone/laptop	Number of unused devices per year	% of E-waste disposed responsibly in America	Number of devices wasted/year
8500+	2.5/4 years	4525	15%	3394

User Groups Identified

“Hoarders”

“Discarders”

“My laptop has a minor issue. I’ll just buy a new one and let my old one sit in my drawer.”

“The new iphone 16 just came out! I don’t need my old one anymore. I’ll throw it away.”

Researchers

“I need access to computing power for my research but my lab’s funding can’t cover it!”

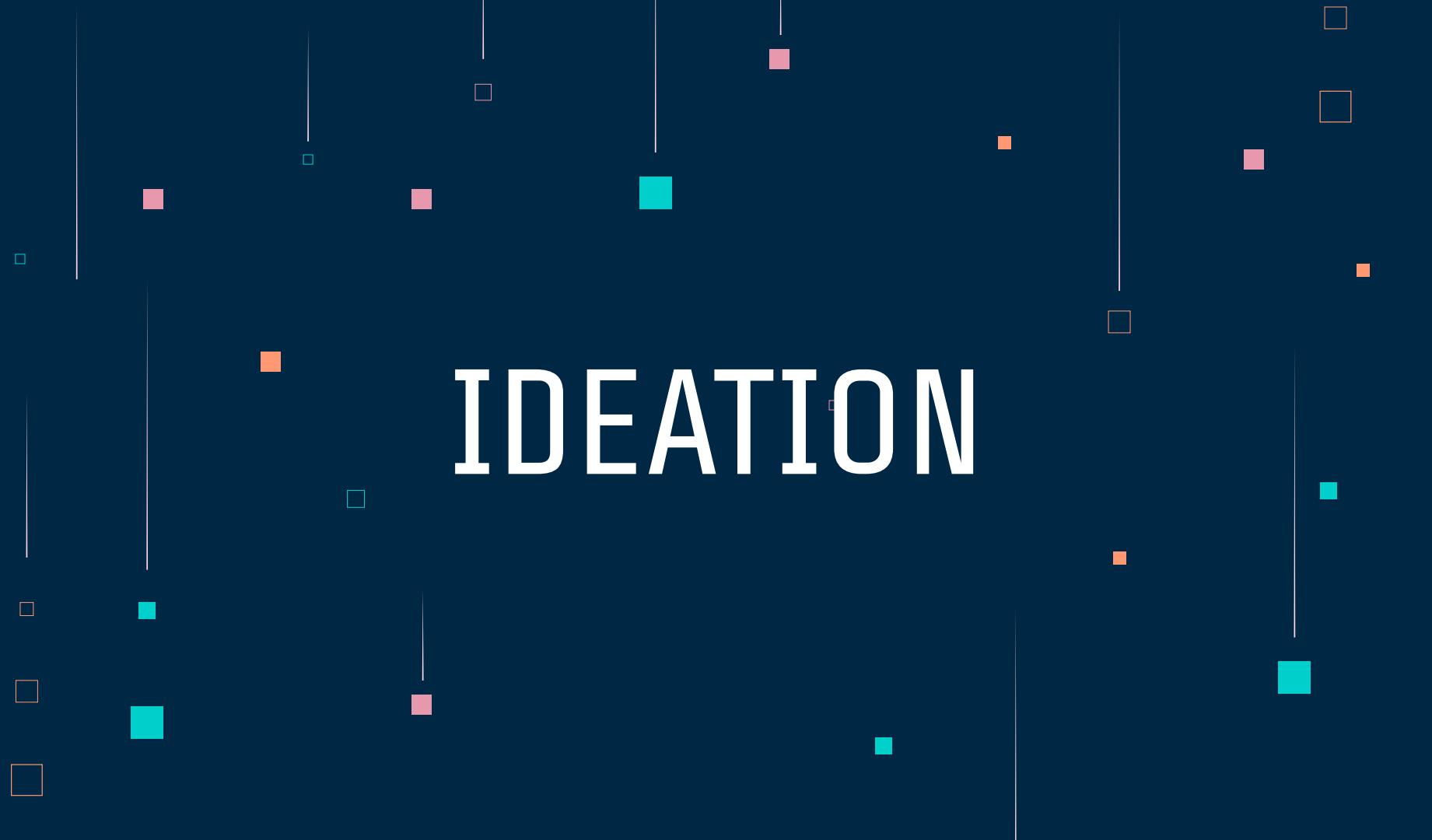
Empathy Map

Says	Thinks
<ul style="list-style-type: none">• “I need the latest gadgets to keep up with my studies.”• “I have a pile of old electronics but don't know what to do with them.”• “Throwing them away feels wasteful”	<ul style="list-style-type: none">• There must be a better way to get rid of my old devices.• I should declutter, but it's overwhelming• Donating might be a good option if it helps others
Does	Feels
<ul style="list-style-type: none">• Frequently upgrades to new technology• Stores old devices under her bed• Avoids dealing with the growing pile of electronics	<ul style="list-style-type: none">• Overwhelmed by clutter• Guilty about potential waste• Eager to find a responsible solution

POVs: Hoarders vs Discarders

User: A Physics major from Denver.

- **Behavior:** Upgrades laptops frequently; hoards old devices.
- **Need:** An way to dispose of electronics that benefits others responsibly.
- **Insight:** Knowing donations aid impactful research would motivate them to declutter


User: An Economics major from Chicago.

- **Behavior:** Discards old/unused smartphones in the trash.
- **Need:** Awareness of e-waste impact and simple recycling options.
- **Insight:** Learning his devices support research and the environment could encourage proper disposal.

PROBLEM STATEMENT

- How can we repurpose unused devices in our college community to reduce electronic waste?

IDEATION

Testing: Iteration 1

Upcycling for the win!

Testing: Success Metrics & Feedback

Feedback

Scheduling: Need for specific booking times due to students' busy schedules

Visceral impact: Importance of communicating the tangible benefits of donating resources (e.g., how their compute donations are used and why it matters).

Station Utilization Rate

Measure: Percentage of booked vs. available slots.

Success Indicator: Consistent high utilization (>75%).

Non-Profit Research Savings

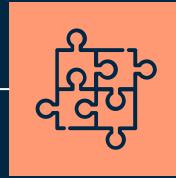
Measure: Money saved for research through donated compute resources.

Success Indicator: Dollar value of compute resources provided to non-profits.

User Benefits from Product Donations

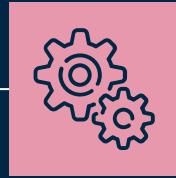
Measure: Survey data and user feedback on the personal or emotional impact of donating (e.g., sense of contribution, learning outcomes).

Success Indicator: High satisfaction rate and perceived positive impact (>80% of users report a positive experience).


OUR SOLUTION

01

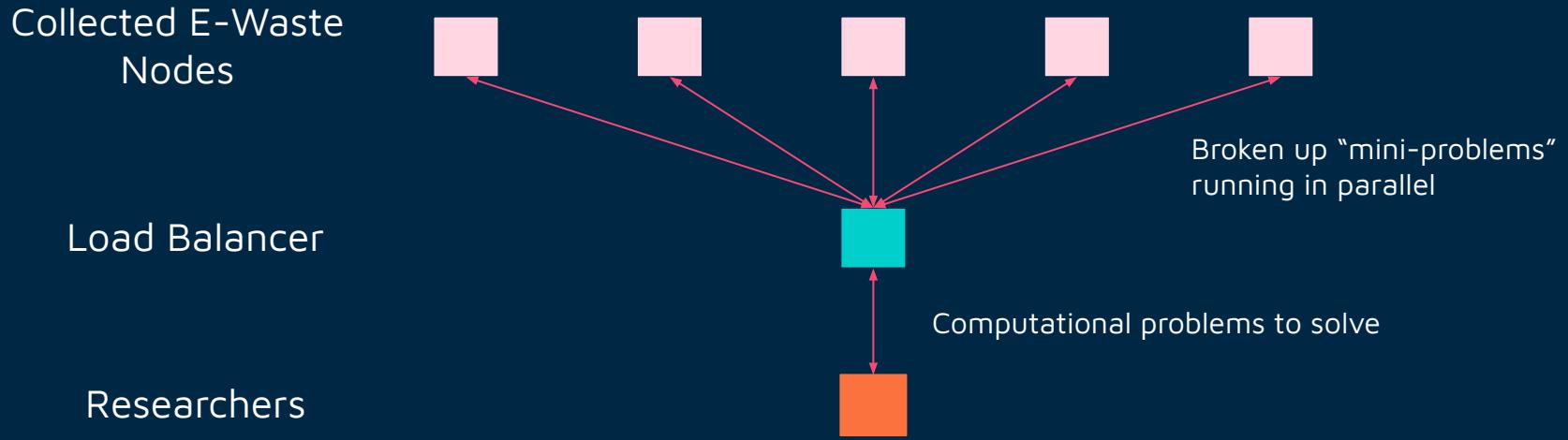
COLLECT


Allow users to select and view the closest e-waste drop off center to them through an application

02

COLLATE

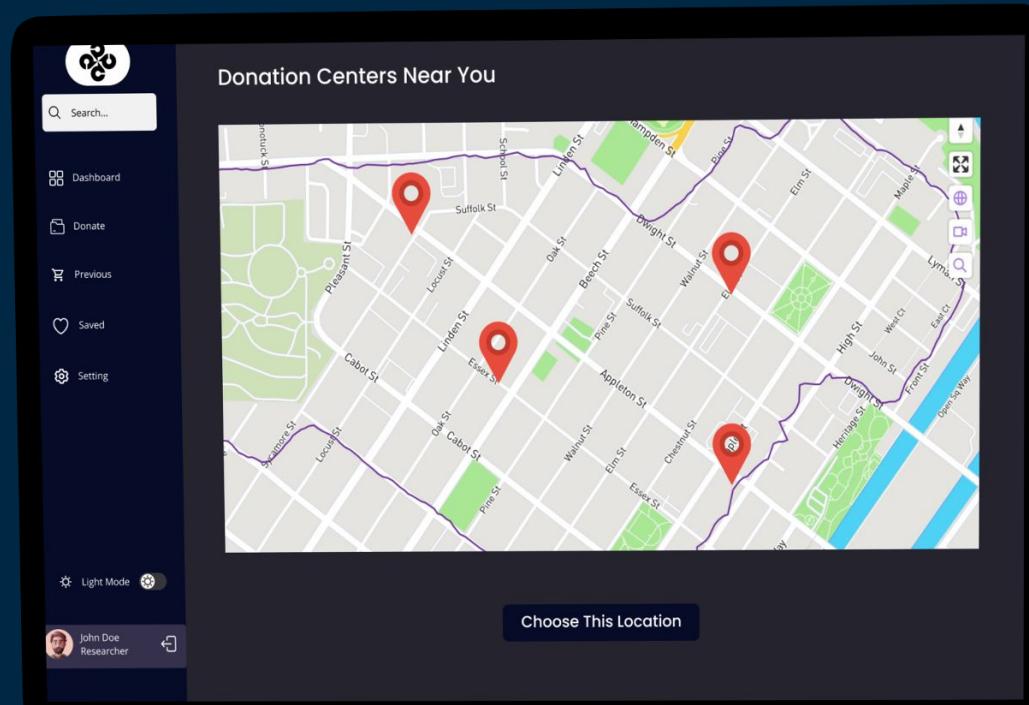
Compile the resources all in one lab from each of the different drop-off centres

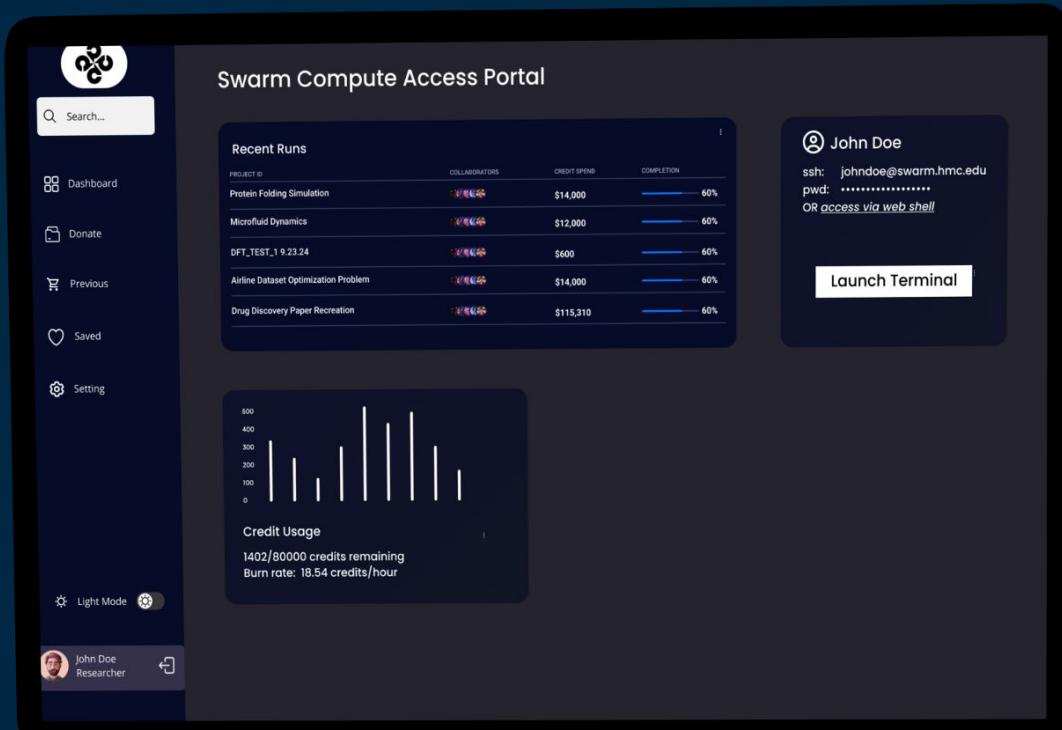


03

COMPUTE

Creating a compute network that is comprised of the clusters of electronics that can solve computationally intensive problems


SWARM Compute Network


Iteration 2: Figma

Iteration 2: Figma

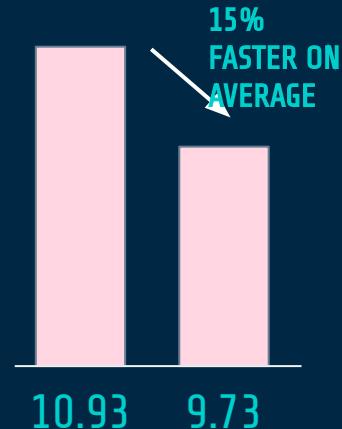
Figma

The image shows a Figma wireframe of a web application interface titled "Swarm Compute Access Portal". The interface is displayed on a laptop screen, with a dark blue header and a light blue footer. The header features a logo with a stylized 'S' and 'C' inside a circle, a search bar, and a navigation menu with items: Dashboard, Donate, Previous, Saved, Setting, and Light Mode. The footer contains a user profile for "John Doe" (Researcher) and a copy/paste icon. The main content area is titled "Swarm Compute Access Portal". It includes a "Recent Runs" section with a table showing five projects: Protein Folding Simulation, Microtubule Dynamics, DFT_TEST_1 9.23.24, Airline Dataset Optimization Problem, and Drug Discovery Paper Recreation. Each row in the table shows the project name, a list of collaborators (represented by small icons), the credit spent, and a completion progress bar. Below this is a "Credit Usage" section with a bar chart showing usage over time and text indicating 1402/80000 credits remaining and a burn rate of 18.54 credits/hour.

Swarm Compute Access Portal

PROJECT ID	COLLABORATORS	CREDIT SPEND	COMPLETION
Protein Folding Simulation	██████	\$14,000	60%
Microtubule Dynamics	██████	\$12,000	60%
DFT_TEST_1 9.23.24	██████	\$600	60%
Airline Dataset Optimization Problem	██████	\$14,000	60%
Drug Discovery Paper Recreation	██████	\$115,310	60%

Credit Usage


1402/80000 credits remaining
Burn rate: 18.54 credits/hour

DEMO

With our clustering system, we're able to make computations **15%+** faster on average, by simply adding one extra node to our network...

```
● (base) rohandesai@Rohans-MacBook-Pro-6 dockerPOC %
Task completed in 10.93 seconds.
```

```
(base) sam@Sams-MacBook-Pro-4 Yes %
python3 compute_server.py
Server waiting for connection...
Connected by ('172.28.125.84', 55141)
Server starting its tasks...
Task completed in 3.78 seconds.
Client task completed in 5.80 seconds.
Total distributed computation time: 9.73 seconds.
```


From 0 to 1...

- How does computing like this scale? What architectures are better:
Kubernetes vs Swarms
 - Does this scale $O(\log(n))$? If so, there's a carrying capacity at which we're not increasing compute in any significant way
- With larger devices, we need to set up VMs on every device to make the architectures play nicely together
 - Might be a problem on very old devices
- This is only useful in problems that can utilize *parallelization* or other other styles of distributed computing
 - This covers really big research spaces like unfederated learning, but other problems may need some large-scale rewriting or aren't compatible.